
Web Text Retrieval with a P2P Query-Driven Index

Gleb Skobeltsyn†, Toan Luu†, Ivana Podnar ˇZarko‡, Martin Rajman†, Karl Aberer†
†Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

Lausanne, Switzerland

‡University of Zagreb
Faculty of Electrical Engineering and Computing

Zagreb, Croatia
{gleb.skobeltsyn, vinhtoan.luu, martin.rajman, karl.aberer}@epfl.ch, ivana.podnar@fer.hr

ABSTRACT
In this paper, we present a query-driven indexing/retrieval
strategy for efficient full text retrieval from large document
collections distributed within a structured P2P network.
Our indexing strategy is based on two important proper-
ties: (1) the generated distributed index stores posting lists
for carefully chosen indexing term combinations, and (2)
the posting lists containing too many document references
are truncated to a bounded number of their top-ranked el-
ements. These two properties guarantee acceptable stor-
age and bandwidth requirements, essentially because the
number of indexing term combinations remains scalable and
the transmitted posting lists never exceed a constant size.
However, as the number of generated term combinations
can still become quite large, we also use term statistics ex-
tracted from available query logs to index only such combi-
nations that are frequently present in user queries. Thus, by
avoiding the generation of superfluous indexing term com-
binations, we achieve an additional substantial reduction in
bandwidth and storage consumption. As a result, the gener-
ated distributed index corresponds to a constantly evolving
query-driven indexing structure that efficiently follows cur-
rent information needs of the users.

More precisely, our theoretical analysis and experimen-
tal results indicate that, at the price of a marginal loss in
retrieval quality for rare queries, the generated index size
and network traffic remain manageable even for web-size
document collections. Furthermore, our experiments show
that at the same time the achieved retrieval quality is fully
comparable to the one obtained with a state-of-the-art cen-
tralized query engine.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Index-
ing – Indexing Methods; E.1 [Data Structures]: Distributed
Data Structures

General Terms: Algorithms

Keywords: P2P DHT IR Text Retrieval Query-Driven In-
dexing TREC Precision

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-597-7/07/0007 ...$5.00.

1. INTRODUCTION
In reaction to the scalability problems encountered with

centralized information retrieval engines, P2P networks that
distribute a global index over a large number of intercon-
nected peers have been recently considered as a promising
solution to cope with web-scale document retrieval. How-
ever, while P2P networks containing very large number of
peers indeed provide virtually unlimited storage capacities,
there still is an ongoing debate about the true scalability of
P2P web search. Particularly, in [9], the authors show that
a näıve use of structured or unstructured P2P networks for
web retrieval leads to unscalable network traffic, and, even
for more sophisticated schemes, such as term-to-peer index-
ing [6, 4] or hierarchical federated architectures [3, 11], only
little evidence of their scalability is available. In fact, in [23],
it has been shown that, even when carefully optimized, dis-
tributed algorithms using traditional single-term indices in
structured P2P networks generate unscalable network traf-
fic during retrieval, mainly because of the bandwidth con-
sumption resulting from the large posting list intersections
required to process queries with frequent terms.

In the approach described in [14], instead of indexing with
single terms, which leads to potentially very large posting
lists, we showed a significant reduction of the retrieval traffic
by systematically truncating large posting lists to a constant
size, while compensating the resulting loss of information by
also indexing with carefully selected combinations of index-
ing terms. Consequently, the index contains a larger number
of entries (terms and term combinations), but each entry is
associated with a shorter posting list. The central property
(shown in [14]) of such an indexing strategy is that the size
of the index grows linearly with the number of documents,
which is acceptable under the reasonable assumption that
the ratio between the total number of documents and the
total number of peers in the network remains bounded.

However, as the number of generated term combinations
might still remain practically unmanageable for large docu-
ment collections, in [19], we suggested that filtering indexing
keys using query statistics might lead to a further reduction
of the indexing traffic without compromising retrieval qual-
ity. In this paper we will provide a detailed description of
our query-driven indexing technique and carefully evaluate
its impact on retrieval quality using extensive evaluations
based on realistic web-scale document collections and query
logs, as well as the TREC collection. In a companion pa-
per [20], we provide a detailed description of architectural
and algorithmic issues of this approach which we cannot in-
clude here due to space limitations.

Thus, our query-driven indexing strategy relies on the use
of statistics about query popularity and an on-demand in-
dexing mechanism to ensure that only popular and non-
redundant term combinations are maintained in the index.
With this new indexing strategy, the requirements in terms
of storage and bandwidth consumption are further reduced,
due to a more compact and efficient indexing structure,
while the bounded size of the associated posting lists still
guarantees a manageable bandwidth consumption during re-
trieval. These two properties make our approach a promis-
ing solution for web-scale P2P information retrieval.

The rest of this paper is organized as follows: We describe
the indexing and retrieval models and mechanisms in Sec-
tion 2. We briefly outline our scalability analysis in Section 3
and provide our new experimental results in Section 4. Fi-
nally, we position our approach with respect to related work
in Section 5, give some more general perspectives for P2P
information retrieval in Section 6 and conclude the paper in
Section 7.

2. DISTRIBUTED INDEXING/RETRIEVAL

2.1 P2P global index
Let us consider a structured P2P network with N peers

Pi, 1 ≤ i ≤ N , and a possibly very large document collection
D, consisting of |D| documents dj , 1 ≤ j ≤ |D|. TD is the
set of all indexing single terms in D and |TD| denotes the
number of terms in TD.

In addition, we assume that a large query log L is avail-
able, where each query q ∈ L is a set of terms. The set of
all terms present in the query log is denoted by TL, and the
intersection TL ∩ TD thus corresponds to the query terms
producing non-empty results.

In the P2P network, each peer Pi stores a fraction of the
global document collection D, denoted by Di, and builds a
local index for Di. At the same time, Pi contributes to store
and maintain a fraction of the global distributed index I
that associates indexing terms and term combinations with
references to documents in D.

Definition 1. A key k refers to an indexing term or a com-
bination of indexing terms. We apply standard stop-word
elimination and stemming procedures [15] while generating
a key.

A posting list ρ(k) associated with a key k is the list
of references to documents that contain k: ρ(k) = {dj ∈
D | k ∈ dj}. In addition, each pair (dj , k), dj ∈ ρ(k) is
associated with a relevance score r(dj , k). Various models
can be used to compute the relevance scores. Currently, we
are using the top performing BM25 relevance computation
scheme [17]. Notice, however, that any other relevance com-
putation scheme could be used instead, provided that the
required global statistics are stored in the P2P network.

Definition 2. A truncated posting list (TPL) τ(k) associ-
ated with a key k refers to the DFmax best-ranked document
references in the posting list ρ(k), where DFmax is a param-
eter of our model, corresponding to the maximal size of a
TPL.

By construction, |τ(k)| ≤ DFmax, and, obviously, τ(k) =
ρ(k) when |ρ(k)| ≤ DFmax.

Definition 3. The usage frequency qf(k) of a key k refers
to a value that indicates the global popularity of the key k
in the query log L. In the simplest case, qf(k) can be the
query frequency of k, which is incremented each time a new
query that contains k is processed.

Currently, we use oblivious frequency counters to main-
tain usage frequencies only within a time interval of pre-
defined length and therefore enable a timely reaction to
changes in the query popularity distribution.

Definition 4. A candidate index item for a key k is the
pair (k, qf(k)) associating k with its usage frequency qf(k).
A candidate index item is created for the key k and inserted
in the global index I iff:

◦ k contains from 2 to smax terms: 2 ≤ |k| ≤ smax,
where smax is a parameter of our model (size filter).

◦ for all immediate sub-keys of k, their posting lists con-
tain more than DFmax elements and the corresponding
TPLs are stored in the global index (see Definition 5).
∀ k′ ⊂ k, |k′| = |k| − 1 : |ρ(k′)| > DFmax & τ(k′) ∈ I
(redundancy filter).

Definition 5. An active index item for a key k is the triple
(k, qf(k), τ(k)) associating k with its usage frequency qf(k)
and its TPL τ(k). An existing candidate index item for a
key k is activated (i.e., its status is changed from candidate
to active) iff:

◦ k is popular : qf(k) ≥ QFmin, where QFmin is a pa-
rameter of our model (popularity filter).

The global distributed index I maintains the large set of
candidate and active index items generated for all the keys
inserted in the index. Notice that any key k can be, either 1)
not present in the index, or 2) associated with a candidate
index item, or 3) associated with an active index item.

We call a key k a candidate key if the global index contains
a candidate index item for k. Similarly, we say that a key k
is indexed if an active index item is stored for it in the global
index. Notice that a key can be indexed only if it passed all
three filers (size, redundancy and popularity) defined above.

The global index is distributed over the peers such that
the fraction of the index under the responsibility of a peer Pi

is exactly the set of index items associated with the keys that
are allocated to Pi by the Distributed Hash Table (DHT)
built on top of the P2P network. Note that, in such a DHT,
the peer responsible for a given key can be uniquely deter-
mined by applying a globally known hash function, thus,
ensuring balanced placement of the indexing information.
An efficient and self-organizing communication protocol en-
ables any peer to route a message to the peer responsible for
a given key in O(log N) overlay hops, where N is the total
number of peers in the network. It is out of scope of this
paper to explain the details of such a protocol, which can
be found in [1].

Within such a setup, each peer Pi is responsible for the
following complementary tasks:

• Pi takes care that its local document collection Di is
properly represented in the global distributed index I.

• Pi maintains its fraction of the global index Ii
1. In

particular, it takes care that the usage frequencies are
1Notice that the fraction of the global index maintained at
Pi is has no a priori reason to be related to the local docu-
ment collection stored at Pi.

updated during query processing. Based on this in-
formation, Pi can decide to activate candidate index
items or to deactivate active index items.

• While processing a query q, Pi interacts with the global
P2P index in order to retrieve relevant TPLs stored
within active index items. If necessary, Pi requests
the corresponding peers to create new candidate index
items for one or more keys contained in q.

A more detailed description of the above-mentioned index-
ing and retrieval tasks is given below. The formal descrip-
tion of the corresponding algorithms can be found in [20].

2.2 Indexing/Retrieval mechanisms
The goal of distributed indexing is to generate and main-

tain a suitable set of active index items, associated with
the corresponding TPLs, for any given global document col-
lection D distributed over N peers and the current query
popularity distribution. Since the indexing process is com-
putationally intensive, peers share the indexing load, and
collaboratively build the required distributed index.

First, the peers build a so-called basic single-term index
that contains active index items for all indexing single terms
in D. Each peer Pi performs indexing of its local document
collection Di and inserts all found single-term keys, asso-
ciated with their local TPLs, into the P2P network. As
a result, an active index item is generated for each single
term t ∈ D. It contains the corresponding global TPL and
is maintained by the peer responsible for t. Recall that all
TPLs are of bounded size, i.e., as soon as more than DFmax

document references are collected, entries with the lowest
scores are discarded such that only the DFmax-best ranked
elements remain in the TPL. By default, all (even unpopu-
lar) index items associated with single-terms are active, and
hence, the basic index enables the processing of any query,
possibly with a degraded retrieval performance due to the
loss of information caused by truncation.

The subsequent indexing process is fully driven by the
query statistics, and is performed in parallel with retrieval.
More precisely, as soon as a peer P receives a new query q, it
starts to explore the lattice of the query term subsets (here-
after called the query lattice), in decreasing subset size order
starting with the query itself (an example of a query lattice
is given in Figure 1, which shows 3 potential scenarios for
the processing of a query). For each of the explored lattice
nodes q′ (hereafter called the query keys), the querying peer
P requests from the peer P ′ responsible for q′ the posting
list associated with q′.

Each peer P ′ that receives such a request attempts to
increment the usage frequency of q′ in the corresponding
index item. If no index item exists for q′, no extra action is
taken. Additionally, as soon as a candidate key q′ becomes
popular, P ′ initiates the key activation process by triggering
an on-demand indexing mechanism for q′ (see Section 2.3).
As a result of the on-demand key indexing, the candidate
index item associated with q′ will acquire a new global TPL
and thus become an active index item that can be used for
subsequent query processing. For example, in Figure 1-b, a
candidate index item is stored for the key bc, and, as soon as
its popularity reaches the QFmin threshold, it is activated
as shown in Figure 1-c.

If an active index item for q′ is located, the peer P ′ sends
back to the querying peer P the content of the TPL associ-

ated with q′. When P receives the TPL, it stores it locally,
and the part of the query lattice dominated by q′, i.e., all the
query keys contained in q′, are excluded from the subsequent
lattice exploration. For example, for the query lattice shown
in Figure 1-c, if a TPL associated with the key bc is retrieved
from the P2P index, the query keys b and c are not further
explored. Thus, the top-down query lattice exploration can
lead to two mutually exclusive terminal situations:

• At least one query key associated with a non-truncated
posting list is reached. For example the key a in Fig-
ure 1-a is associated with an exhaustive posting list
that can be used to answer any query containing a,
e.g., abc.

• A cut2 of query keys associated with truncated posting
lists is reached. If none of the query keys is popular
enough to be associated with an active index item, the
cut will consist of all the single-term keys contained
in the query (see Figure 1-b). Otherwise, the cut can
consist of keys of different sizes (see Figure 1-c where
keys a and bc form the cut for the query abc).

a b c

ab bcac

abc

a b c

ab bcac

abc

a)

c)

a b c

ab bcac

abc

b)

- probed
 combination

- skipped
 combination

- popularity
 counter

- truncated
 posting list

- posting list
 is used to
 answer the
 query

- no index
 item for
 the key

- candidate
 index item
 (only stat.)

- active
 index item
 (stat.+TPL)

I n d e x i t e m s :

a

b

Legend

Figure 1: Examples for processing the query abc if:
a) a posting list for a is truncated while posting lists
for b and c are not, b) the posting list for a is also
truncated, c) additionally the key bc is indexed.

When either of the two terminal situations is reached, the
query lattice exploration stops and all the retrieved (possi-
bly truncated) posting lists are used by the querying peer
for postprocessing. More precisely, the peer produces their
union, re-ranks all the resulting documents dj with respect

2In a subset lattice a cut is a set of nodes Ni, s.t.: 1) the
union of all the nodes dominated by Ni is equal to the top
node of the lattice; and 2) none of the nodes in the cut
dominates any other node from the cut. For example the
set of nodes a and bc in Figure 1-c is a cut because: 1)
a ∪ bc = abc and 2) a * bc, bc * a.

to the original query q (i.e., it computes the relevance scores
r(dj , q)), and presents the top-ranked document references
to the user as the result for the submitted query q.

For example, Figure 1 shows the processing of the query
abc with three different states for the global index. Notice
that the tick sign highlights the TPLs that are collected by
the querying peer and used to produce the final result for
abc in each case. The top-k results obtained for the query
abc in the case 1-c can potentially be of better quality than
the ones in 1-b due to the fact that an extra TPL for the
key bc is available. In the case 1-a, the quality of the result
is already maximal because the size of the posting list for a
is below DFmax and hence it contains all possible document
references relevant for a, and therefore for abc.

Finally, as a consequence of the query lattice exploration,
the querying peer can also discover new candidate keys that
have to be created. These candidate keys belong to the set
of immediate ancestors of all identified query keys that are:
1) indexed and 2) associated with posting lists that contain
more than DFmax elements3. The peer then simply requests
the creation of all such candidate index items, provided that
they are not already stored in the global index. Recall that
the created candidate index items will only maintain their
usage frequencies, but can be activated later in case they
become popular.

To summarize, the processing of new queries leads to
key activations and hence to the generation of new TPLs,
which, in turn, increases the retrieval quality for subsequent
queries. Obsolete active keys that become unpopular over
time due to changes in the user query distribution can also
be deactivated, thus constantly adapting the set of active
index items stored in the global index to the current user
information needs.

2.3 On-demand indexing mechanism
When a key k is activated, the on-demand indexing mech-

anism is executed by the peer P responsible for k to gen-
erate the global TPL τ(k). As all peers could potentially
hold documents containing k, a näıve approach would be
to broadcast an indexing request containing k to the whole
network. P would then collect the answers and generate the
global TPL. Such a näıve approach is obviously quite expen-
sive in terms of bandwidth consumption and can also lead to
load balancing problems. Nevertheless, our initial solution
described in [20] was based on a carefully optimized version
of broadcast, called opportunistic notification mechanism,
which uses a special P2P-level multicast and various pig-
gybacking techniques. However, despite of many possible
improvements that can decrease bandwidth consumption,
the broadcast-based solution might not scale well with the
network size.

A more “bandwidth-friendly” solution is to store full post-
ing lists for all single term keys together with their truncated
TPLs. This of course costs extra storage but does not en-
tail any additional bandwidth overhead, because the con-
struction of the basic single term index already implies all
necessary communications that are required to generate the
full posting lists. If such full posting lists are available, on-
demand indexing can be carried out in a conventional way
by intersecting the full posting lists of all single terms con-
tained in the key that is being activated. Any distributed set

3In other words these candidate keys belong to the set of
immediate ancestors of all the nodes in the cut.

intersection algorithm, such as the Threshold Algorithm [7],
can be used.

The substantial difference with the standard single-term
indexing approach is that the intersection operation is not
performed on a per-query basis (i.e. frequently), but is exe-
cuted only once when a new key is activated. Moreover, as
the indexing latency is much less crucial than the retrieval la-
tency, we can tolerate a certain delay for the key activation.
Notice that full posting lists are used only for key activation,
whereas the bounded TPLs are used for query processing,
which guarantees a scalable bandwidth consumption during
retrieval.

3. SCALABILITY
In this section we briefly discuss the scalability of the

query-driven approach in terms of bandwidth consumption.
The detailed study and proofs can be found in [14, 20]. In
short, the main reasons for scalability are the following: 1)
the retrieval traffic generated while processing a query is
low, since all transmitted TPLs are of bounded size, and
2) the indexing traffic needed to generate and maintain the
global distributed index is manageable, as it depends on the
number of indexing keys, which can be adjusted with the
QFmin parameter.

Retrieval traffic: As answering a query leads, in the
worst case, to the exploration of all the nodes in the query
lattice that corresponds to query term sets of at most smax

terms, the processing of a query requires the transmission
of at most (log N + 1)

Psmax
i=1

`|q|
i

´
messages. Additionally,

the re-ranking of the final result can lead to the transmis-
sion of at most DFmax

Psmax
i=1

`|q|
i

´
extra messages. Thus,

as the size of all the transmitted messages is bounded, and,
if we assume a bounded query rate for each peer in the net-
work, the total number of transmitted messages grows with
O(N log N). It corresponds to O(log N) retrieval traffic per
peer, which is scalable.

Indexing traffic: The traffic generated to produce and
maintain the global distributed index consists of: 1) the
single-term indexing traffic required to populate the basic
single-term index, and 2) the query-driven indexing traffic
required to generate TPLs for newly activated keys.

Single-term indexing traffic: If we assume that the
number of documents published by a peer is bounded, the
number of messages that have to be transmitted in the net-
work in order to generate the basic single-term index grows
with O(N). As the routing cost to deliver a message to the
corresponding peer is O(log N), the total number of mes-
sages to generate the single-term index is O(N log N), which
corresponds to O(log N) messages a peer has to transfer dur-
ing the single-term index generation.

Query-driven indexing traffic: Each key activation
triggers the on-demand indexing mechanism, which performs
the distributed intersection of the corresponding single-term
posting lists to generate a new TPL. While the bandwidth
consumption of finding top-DFmax postings stored in the
TPL depends on the chosen algorithm (e.g., see [7, 5]), we
can take the worst case complexity as O(N) (messages). The
overall query-driven indexing traffic depends on the number
of actual activations. In [20] we derived an upper bound
for the number of activated keys for a given query log and
showed that it scales linearly with the query log size, pro-
vided that the popularity of term combinations in the log
follows a Zipf law. Thus, the activation rate linearly depends

20 50 100 200 300 400 500 600 0 1 2 3 4 5 10 50 100 ∞

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

Q
ua

lit
y

o
f a

n
sw

er
 (%

)

0%

(0%,25%)

[25%,50%)
[50%,75%)

[75%,100%)
100%

Avg.overlap

a) Log history size (days) b) DFmax (documents) c) QFmin / 3 months

O
v
e
rl
a
p
 (
%
)

QFmin=1

DFmax=600
QFmin=1 / 3 months DFmax=600

Figure 2: Results of the Google experiment: a) overlap achieved for different sizes of the query log measured
in days, b) overlap achieved for different values of DFmax, c) overlap achieved for different values of QFmin.

on the global query rate. But as the latter grows with O(N)
this still corresponds to a scalable traffic in the P2P setup.
In addition, the traffic can be further controlled at the price
of retrieval quality degradation by tuning the QFmin param-
eter for a given time interval. Our extensive experimental
evaluation (see Section 4) shows that the retrieval quality
remains acceptable even for web-scale document collections
with reasonably chosen time interval and QFmin values.

Furthermore, in practice, the bandwidth consumption is
further reduced by using the DHT-level congestion mecha-
nism [8] developed by our group. This module takes care
of the on-the-fly aggregation of the messages with the same
next-hop destination and insures efficient P2P network uti-
lization at peak loads.

4. EXPERIMENTS
In this section, we investigate the retrieval performance

of our query-driven approach. Notice that additional exper-
iments focusing on the scalability are presented in [20].

To analyze retrieval performance, we conducted several
experiments using query logs from the AOL search engine.
These logs contain more than 17M web queries collected
from 650K users during 3 months, from March to May 2006.
We discarded the information about user sessions and ob-
tained a large list of queries sorted by timestamps. In addi-
tion, we considered only unique entries in each user session,
so the repetition of a query by the same user does not af-
fect the query popularity distribution. Finally, we filtered
out queries corresponding to web site URLs, which repre-
sent a large fraction (about a third) of all queries, but are
not interesting for our experiments4.

4.1 Google experiment
The aim of this set of experiments was to evaluate the

impact of query-driven indexing on retrieval quality in the
context of real life web-scale document retrieval. To do so,
we randomly generated a test set of 2K queries taken from
the last day of the AOL log. We then crawled Google’s top-
20 results for each query in the test set. In the following,
we will refer to these top-20 results for a query q as the
reference result for q .

For each test query, we removed the common stop words,

4Such queries can be easily resolved in our framework by
treating URLs as single terms.

applied the stemmer [15], sorted the terms in alphabetical
order5 and generated all possible term combinations. Then,
for each of these combinations, we computed their query fre-
quencies using the AOL query log for the previous 3 months
and crawled Google’s top-DFmax results for all generated
term combinations. In our query-driven index, these results
would be contained in the TPLs associated with indexed
term combinations, provided that each peer uses the same
ranking mechanism as Google.

To evaluate the retrieval quality for a query q, we measure
the overlap between the reference top-20 results for q and
the union of the TPLs associated with the term combina-
tions (keys) that are: 1) contained in q and 2) indexed. The
overlap is expressed as the fraction of the reference top-20
result that appear in the generated union. In other words,
the overlap corresponds to the recall when Google consid-
ered as the reference.

In all experiments, we categorize the overlap values into
the following categories: 1) overlap = 0%, i.e., no result
from the reference top-20 appears in the union, 2) overlap =
(0%−25%), 3) overlap = [25%−50%), 4) overlap = [50%−
75%), 5) overlap = [75% − 100%) and 6) overlap = 100%,
i.e., all results from the reference top-20 appear in the union.

Impact of the log size: Figure 2-a shows the achieved
overlap as the function of the size of the query log, measured
in days. QFmin was set to 1, i.e., a term combination should
be encountered at least once in the previous query history to
be activated and indexed. As our measurements have shown
that considering all possible combinations of size at most 3
is already sufficient to achieve > 97% maximum overlap, we
set smax to 3. The DFmax parameter was set to 600.

With this setting, one can see that, starting from the poor
performance of the single term index6, the overlap rapidly
grows with 100-200K queries being processed per day. The
three months query log yields an overlap of about 80%. No-
tice that our approach could use larger query logs, which
would further improve the retrieval quality. It is also impor-
tant to mention that for more than 80% of the test queries
at least 10 out of 20 reference results were found, whereas
a very low fraction (about 3-4% of the queries) performed
poorly returning no reference result. We analyzed the rea-

5The sorting is performed to diminish the effect of term
ordering on Google’s ranking.
6Recall that if no query log is available, only single term
keys are indexed by default.

DFmax = 100 DFmax = 500

Precision QFmin=∞ QFmin=5 QFmin=3 QFmin=1 QFmin=∞ QFmin=5 QFmin=3 QFmin=1 ST-BM25

P@5 0.306 0.345 0.347 0.341 0.345 0.343 0.343 0.343 0.337
P@10 0.266 0.299 0.295 0.294 0.307 0.302 0.303 0.302 0.298
P@15 0.237 0.267 0.267 0.267 0.276 0.279 0.280 0.278 0.278
P@20 0.212 0.243 0.243 0.246 0.254 0.259 0.259 0.259 0.257
P@30 0.174 0.206 0.209 0.212 0.214 0.221 0.221 0.224 0.226
P@50 0.139 0.169 0.171 0.174 0.175 0.181 0.181 0.183 0.186
P@100 0.097 0.126 0.127 0.130 0.128 0.135 0.135 0.136 0.140

#docRef 236.7 184.6 179.1 173.3 1148.2 880.9 846.2 813.2 193652.4

Table 1: Precision at top-K ranked pages

sons for poor overlap for such queries and identified that in
30-40% of the cases the queries were misspelled. Therefore,
if misspells are treated properly, the overlap values would
be higher.

From Figure 2-a, we can conclude that taking popular
combinations: 1) significantly increases retrieval quality when
compared to the single term index (a twice higher overlap
with the 90-days query log), and 2) yields an overall satis-
factory retrieval quality.

Impact of DFmax: We used the 3-month query log, set
QFmin to 1 and investigated the impact of DFmax on re-
trieval quality. Figure 2-b shows the achieved overlap for
different values of DFmax.

It is interesting to observe that changing DFmax hardly
affects the fraction of queries with a 100% overlap, with a
growth from 56% to 59% for DFmax changing from 20 to 600
respectively. The DFmax value however affects the average
overlap.

Impact of QFmin: Finally, Figure 2-c shows the decrease
in retrieval quality when increasing the QFmin from 0 (all
possible combinations are indexed) up to infinity (basic sin-
gle term index). As before, smax was set to 3 and DFmax

to 600.
Based on these results, we can assume that, in practice,

the QFmin parameter should be chosen in the 5-20 range
resulting in a 60%-70% overlap with our settings. In this
case, the period during which we keep the query statistics
should be increased accordingly.

4.2 TREC experiment
To further evaluate the retrieval quality of our approach,

we also used the WT10G collection7 that contains 1’692’096
documents. 100 test queries were selected from the Ad hoc
topics of the Web Track in TREC-9 and 108. We processed
title-only queries because queries with additional fields were
not used in the real Web search. The standard TREC assess-
ments supplied by the U.S. National Institute of Standards
and Technology were used. We used the Terrier9 engine with
the BM25 weighting scheme to compute top-DFmax docu-
ments stored in the TPLs, and also to compute the final
ranked results.

After processing 17M queries from the AOL query log
to generate the query-driven index, we submitted the 100
TREC queries to the system. Then we compared our results
to the ones returned by the centralized Terrier engine (we
denote this by ST-BM25, i.e., single term indexing using the
BM25 weighting scheme). DFmax was set to 100 and 500.
Notice that the DFmax parameter is useful to control the

7http://ir.dcs.gla.ac.uk/test collections/wt10g.html
8TREC Web Track, http://trec.nist.gov/data/webmain.html
9Terrier search engine, http://ir.dcs.gla.ac.uk/terrier/

trade-off between the retrieval cost and the retrieval quality
(the smaller the DFmax, the lower the bandwidth consump-
tion during retrieval). QFmin was set to 1, 3, 5 and ∞,
where QFmin = ∞ means that no key is activated and only
the basic single term index is used to process the queries.

Table 1 shows the achieved precisions at K (P@K). The
highest value in each line of the table is highlighted in bold.
In general, the results achieved by our system (excluding
QFmin = ∞, DFmax = 100) are slightly better than ST-
BM25 for K≤20. For K>20, our system starts loosing some
relevant documents, when compared to ST-BM25, because
we only store at most top DFmax document references per
key. However, we believe this should not be a problem in
the context of Web search where users are usually only in-
terested in the top 10-20 documents.

In addition, for K>20, Table 1 also shows that, with a
higher value for DFmax, our system is becoming similar to
ST-BM25 (in fact, if DFmax = |D|, our system is equiva-
lent to ST-BM25). In the worst case, when DFmax = 100
(we only keep top-100 documents in the posting lists) and
QFmin = ∞ (the query driven mechanism is not applied),
our system retrieves 75% of the relevant documents retrieved
by ST-BM25 at top-50 (0.139/0.186) and 89% at top-10
(0.266/0.298). Notice that these values are already quite
high due to the relatively small size of the WT10G collec-
tion. In general, the query-driven technique with reasonable
values of QFmin performs similarly to ST-BM25.

The last line in the table shows the average number of
transmitted document references during the processing of
the 100 TREC queries, which indicates the bandwidth con-
sumption during retrieval. For ST-BM25, we simulate the
näıve approach where the full posting lists are transmitted
to the querying peer for each of the terms in the query.
Obviously, with smaller values of DFmax, we achieve lower
bandwidth consumption. Since our posting lists are trun-
cated to a constant size, the bandwidth consumption will
remain constant when the size of the collection increases, as
shown in [14].

Finally, the TREC experiment confirms the conclusion
that the query driven indexing approach indeed delivers a
retrieval quality that is fully comparable to the one of a cen-
tralized single-term index, and, at the same time, guarantees
a scalable traffic during retrieval.

5. RELATED WORK
A number of solutions for text-based retrieval in decen-

tralized environments have been proposed in the literature.
They are based on either unstructured [6], hierarchical [11,
2], or structured P2P networks [4, 13] populated with peer-
level collection descriptions to facilitate the peer-selection
process followed by document-level retrieval from the se-

lected peers. Such solutions depend on the quality of peer-
level descriptors and in general perform well for clustered
content when a small subset of peers holds documents rele-
vant to a given query. Additionally, it has been recognized
in [13] that when taking into account term co-occurrences to
identify promising peer-level index entries associated with
term combinations, the peer selection process and corre-
sponding retrieval performance are largely improved. How-
ever, while performing well in a small network, it is unclear
whether the retrieval quality will remain acceptable in a
large-scale setting due to the peer granularity of the index.

Query-driven solutions have been used to improve the
peer-selection process in hierarchical P2P networks [2, 12].
In [2] a super-peer backbone network maintains the infor-
mation about good candidates for answering a query based
on past queries, while [12] improves resource selection by
modeling past user behavior to direct the search into the
adequate part of the network. In general, the main problem
of hierarchical P2P solutions is the increase of the number
of generated messages during retrieval with the size of the
network in order to maintain acceptable retrieval quality.

In contrast to peer-level solutions, document-level index-
ing has mainly been applied in structured P2P networks [16,
21, 22]. Since large posting lists are the major concern for
such solutions, both [16] and [21] have proposed top-k post-
ing list joins, Bloom filters, and caching as promising tech-
niques to reduce search costs for multi-term queries. How-
ever, a recent study [23] shows that single-term indexing is
practically unscalable for web sizes even when sophisticated
protocols are combined to reduce retrieval costs. There-
fore, the pSearch system [22] proposes another approach
that places documents onto a DHT network according to
their semantic vectors produced by Latent Semantic Index-
ing (LSI) in order to reduce document dimensionality and
guarantee solution scalability. However, as semantic vectors
have to be defined a priori, the method cannot efficiently
handle dynamic scenarios and adapt to changing collections.
A query-driven indexing method at document granularity
has recently been proposed in [10]. However, the solution is
based on single-term indexing and does not consider index-
ing with term combinations. Finally, the Distributed Cache
Table approach [18] also uses the idea of dynamic indexing
with term combinations tailored to the query distribution,
but is rather suitable for middle-size P2P text retrieval sys-
tems as it relies on local postprocessing of possibly large
posting lists.

Contrary to existing approaches, we index documents with
popular term combinations extracted from user queries and
continuously update the index adapting it to user interests.
Our solution assumes a random distribution of documents
over peers and performs document-level indexing in a struc-
tured P2P network. It is the continuation of our efforts
to design scalable solutions for full-text P2P search. While
in [14] we have concentrated on minimizing the generated
retrieval traffic, our query-driven solution initially outlined
in [19], additionally reduces the corresponding indexing traf-
fic. We have shown in [20] that the proposed solution is
scalable, while the present paper is essentially focused on
the evaluation of retrieval performance.

6. PERSPECTIVES FOR P2P-IR
As Internet based document access is becoming widespread,

the field of textual information retrieval is also undergoing

a strong change related to the progressive emergence of a
novel distributed and decentralized retrieval paradigm based
on P2P architectures. In our view, this new paradigm is not
only concerned with the well defined scalability problem, but
also with more general issues such as the efficient manage-
ment of heterogenous information sources and user-centric
approaches to information retrieval. In this perspective P2P
retrieval offers a viable alternative to existing Web search
engines, and supports interesting novel usage scenarios. In
such scenarios, we assume that each member of the P2P net-
work contributes documents to a global document collection
and invests a part of its local computing resources (storage,
CPU, bandwidth) to maintain a fraction of a global P2P
index. This investment is rewarded by the network-wide
accessibility that the global P2P search engine provides for
the local documents by making them globally searchable. In
addition, as the retrieval of a document always remains un-
der the control of the peer that owns it, the approach opens
interesting perspectives for business models based on direct
rewarding of the original content providers instead of “in-
formation brokers”, such as the current major centralized
search engines.

More precisely, we identified several distinguishing fea-
tures for P2P-based information retrieval:

Scalability: A P2P network of 0.5M peers (which we be-
lieve to roughly corresponds to the number of servers used
by a large scale centralized search engine), within which each
peer would handle only 50K documents, should be able to in-
dex a document collection of around 25 billions pages. This
number, according to unofficial estimates, approximately
corresponds the document collection size that major search
engines currently index. Notice that 0.5M peers is fairly
small when compared to the 4 millions peers in the eMule
P2P network10 or to the 100 millions Skype users11, reveal-
ing a great potential of a large scale P2P network in terms
of scalability.

Heterogeneity: Standard centralized search engines use
pull mechanisms to populate their indices: they periodically
crawl the Internet, extract textual elements from the ac-
quired Web pages and build their indexes from these el-
ements. Such uniform and centralized processing implies
that some specific indexing features12 might get lost un-
less they are specifically supported by the search engine,
which requires a substantial centralized effort. In contrast,
P2P-IR systems use push mechanisms: peers decide them-
selves which documents they want to make globally search-
able and, more importantly, how these documents should
be indexed. Thus, the effort of handling heterogenous data
is distributed in the network and can be managed more ef-
ficiently. Such a scenario is therefore appropriate for the
management of heterogeneous, frequently changing docu-
ment collections. For instance, a specialized digital library
could continue to use its own sophisticated means to in-
dex/query local documents, while using a P2P-based IR in-
frastructure as a common search framework that makes its
specialized indexing/retrieval means available to the whole
P2P network.

Provider-centric vs. broker-centric approach: Ma-
jor search engines play a central role as information brokers,

10http://en.wikipedia.org/wiki/Emule
11http://about.skype.com
12E.g., complex gene names in bioinformatic collections, or
formulas in math or chemistry related sites.

but not so much as information creators. Therefore, IR in-
frastructures allowing novel business models based on the
direct rewarding of original content providers might be con-
sidered. Within this perspective, P2P-IR systems exhibit
interesting characteristics: namely, as already mentioned,
in such systems only the document indices are published in
the network, while the documents (and thus the associated
added value) always remain under the control of the original
provider (peer). The peers can therefore decide about the
conditions upon which the document access will be granted
(e.g., free access, micro-payment, subscription, remunerated
advertizement, etc.).

Community-based search: A P2P-IR client is an easy
to install software that requires only limited resources from
the hosting system. A P2P-IR network is therefore quite
simple to deploy, as it does not require anyone taking the
responsibility of setting up a centralized server (or network
of servers). Consequently, as soon as P2P-IR clients be-
come widely available, building topical communities sharing
a document collection within a given domain should become
very simple. Thus, as the emergence of such topical com-
munities in fact corresponds to an implicit structuring of
the global Web-scale document collection, this opens an in-
teresting possibility to fight the unavoidable precision drop
associated with the growth of any document collection.

7. CONCLUSION
Using a structured P2P network for distributing the load

among a large number of interconnected nodes represents a
promising approach for indexing very large document col-
lections, but poses serious challenges on the design of the
distributed index in order to remain scalable with respect
to bandwidth consumption, storage space and load balanc-
ing at indexing and retrieval.

This paper makes the following contributions to the P2PIR
area: 1) it describes a novel query-driven indexing strategy
based on indexing of popular term combinations that guar-
antees scalable storage and bandwidth requirements; 2) it
provides the scalability analysis, based on both theoretical
results and experimental evaluations, that shows the viabil-
ity of our approach for web-scale document collections; 3) it
reports the experimental evaluation of the P2P information
retrieval performance for real web-size document collections
and query logs.

The provided theoretical analysis and experimental re-
sults indicate, that at the price of a marginal loss in re-
call for rare queries, the generated index and network traffic
remain manageable even for web-size document collections.
Furthermore, our experimental evaluation shows that the re-
trieval precision achieved for a random set of real queries is
fully comparable to the one obtained with a state-of-the-art
centralized query engine.

As a future work, we plan to continue to optimize the
prototype used for our experiments in order to process even
larger document collections allowing us a more detailed anal-
ysis of the characteristics specific to peer-to-peer informa-
tion retrieval. In addition, a computationally more efficient
prototype will also allow us to better explore the parameter
space of our model in order to better understand the impact
of each of the parameters, and to achieve a more optimal
tradeoff between the different constraints that these parame-
ters are associated with. The most recent version of our P2P
prototype is available at http://globalcomputing.epfl.ch/alvis.

Acknowledgement: The work presented in this paper was (partly)
carried out in the framework of the EPFL Center for Global Comput-
ing and supported by the Swiss National Funding Agency FER as part
of the European projects BRICKS (507457) and ALVIS (002068).

8. REFERENCES
[1] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas,

S. Haridi, and M. Hauswirth. The Essence of P2P: A
Reference Architecture for Overlay Networks. In P2P, 2005.

[2] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL
Meets P2P - Distributed Document Retrieval Based on
Classification and Content. In ECDL, 2005.

[3] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden.
Progressive Distributed Top-K Retrieval in Peer-to-Peer
Networks. In ICDE, 2005.

[4] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving Collection Selection With Overlap
Awareness in P2P Search Engines. In SIGIR, 2005.

[5] P. Cao and Z. Wang. Efficient Top-K Query Calculation in
Distributed Networks. In PODC, 2004.

[6] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content
Addressable Peer-to-Peer Information Sharing
Communities. In HPDC, 2003.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation
Algorithms for Middleware. In PODS, 2001.

[8] F. Klemm, J.-Y. L. Boudec, and K. Aberer. Congestion
Control for Distributed Hash Tables. In NCA, 2006.

[9] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. The Feasibility of Peer-to-Peer Web Indexing
and Search. In Workshop on Peer-to-Peer Systems, 2003.

[10] Y. Li, H. V. Jagadish, and K.-L. Tan. Sprite: A
Learning-Based Text Retrieval System in DHT Networks.
In ICDE, 2007.

[11] J. Lu and J. Callan. Federated Search of Text-Based
Digital Libraries in Hierarchical Peer-to-Peer Networks. In
ECIR, 2005.

[12] J. Lu and J. Callan. User Modeling for Full-Text Federated
Search in Peer-to-Peer Networks. In SIGIR, 2006.

[13] S. Michel, M. Bender, N. Ntarmos, P. Triantafillou,
G. Weikum, and C. Zimmer. Discovering and Exploiting
Keyword and Attribute-Value Co-occurrences to Improve
P2P Routing Indices. In CIKM, 2006.

[14] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer.
Scalable Peer-to-Peer Web Retrieval with Highly
Discriminative Keys. In ICDE, 2007.

[15] M. F. Porter. An Algorithm for Suffix Stripping. Program,
14(3):130–137, 1980.

[16] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. In Middleware, 2003.

[17] S. E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull,
and M. Lau. Okapi at TREC. In TREC, 1992.

[18] G. Skobeltsyn and K. Aberer. Distributed Cache Table:
Efficient Query-Driven Processing of Multi-Term Queries in
P2P Networks. In P2PIR, 2006.

[19] G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and
K. Aberer. Query-Driven Indexing for Peer-to-Peer Text
Retrieval (poster). In WWW, 2007.

[20] G. Skobeltsyn, T. Luu, I. Podnar Žarko, M. Rajman, and
K. Aberer. Query-Driven Indexing for Scalable Peer-to-Peer
Text Retrieval. In Infoscale, 2007.

[21] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A Peer-to-Peer Architecture for Scalable Web
Search and Information Retrieval. In WebDB, 2003.

[22] C. Tang, S. Dwarkadas, and Z. Xu. On Scaling Latent
Semantic Indexing for Large Peer-to-Peer Systems. In
SIGIR, 2004.

[23] J. Zhang and T. Suel. Efficient Query Evaluation on Large
Textual Collections in a Peer-to-Peer Environment. In P2P,
2005.

