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ABSTRACT
The state-of-the-art techniques for processing multi-term
queries in P2P environments are query flooding and in-
verted list intersection. However, it has been shown that
due to scalability reasons both methods fail to support full-
text search in large scale document collections distributed
among the nodes in a P2P network. Although a number
of optimizations have been suggested recently based on the
aforementioned techniques, little evidence is given on their
scalability. In this paper we suggest a novel query-driven
indexing strategy which generates and maintains only those
index entries that are actually used for query processing.
In our approach called Distributed Cache Table1 (DCT) we
suggest to abandon the difference between data indexing
and query caching, and to store result sets (caches) for the
most profitable queries. DCT employs a distributed index
to efficiently locate caches that can answer a given multi-
term query and broadcasts the query to all the peers only
if no such caches were found. Evaluations on real data and
query loads show that DCT converges to a high cache-hit
ratio and indeed offers a large-scale distributed solution for
storing and efficient querying of vast amounts of documents
in the P2P setting. DCT achieves two orders of magnitude
improvement in traffic consumption compared to a standard
distributed single-term indexing approach.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing
- Indexing Methods; E.1 [Data Structures]: Distributed Data
Structures

General Terms: Algorithms

Keywords: P2P DHT Query-Driven Indexing Caching Multi-
Term Query Processing
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1. INTRODUCTION
P2P systems have been successfully employed by global-

scale file-sharing applications, proving that such systems are
capable of storing vast amounts of data. However, to make
P2P systems a viable architectural alternative for informa-
tion retrieval and database-oriented applications, support
for expressive queries is required. An arbitrary complex
query can be answered by broadcasting it to all peers in
the network, since each peer receiving the query, can locally
evaluate it and return its contribution to the overall result
set. However, this comes at the expense of high bandwidth
consumption. An alternative solution are structured P2P
systems, as they typically offer logarithmic search complex-
ity in the number of participating nodes. Although the use
of a distributed index (typically a DHT) enables more effi-
cient query-processing, it requires sophisticated index design
because single-term indexing solutions, even when carefully
optimized, generate unscalable search traffic [24].

In this paper we concentrate on a problem of efficient pro-
cessing of multi-term queries over a corpus of text docu-
ments placed in a large-scale P2P distributed storage. As
the number of peers in the network can be large, the use
of an unstructured network is unfeasible due to high band-
width consumption induced by frequent broadcasts. Thus,
we employ a standard DHT approach to associate queries
to their result sets in a non-trivial fashion. Our approach is
motivated by the observation that a large number of index
entries may never be queried and therefore the maintenance
of such entries is unnecessary. We employ a novel index-
ing/caching strategy, Distributed Cache Table (DCT), for
efficient processing of multi-term queries that is driven by
the query load.

DCT populates the storage space provided by partici-
pating peers with result sets (caches) for carefully chosen
queries and uses this data to answer further queries. Each
cache stores a list of document digests2 and hence can be
used to resolve any query if its result set is contained in
the list. Peers maintain those caches which are frequently
used to answer queries and consume little space3. DCT per-
forms an adaptive selection of queries to cache, based on
the monitored query statistics taking into account limited

2A document digest contains an unique document identifier
and a list of terms extracted from the document.
3The reasoning behind the cache size restriction is related
to limited storage and traffic consumption and refers to the
approach that indexes discriminative term sets (they are
queries in our case) associated with result sets of constrained
size [13].



storage capacity with the goal of minimizing the number
of cache-misses. In particular, each peer runs a greedy al-
gorithm leading to a global quasi-optimal cache selection.
Therefore, DCT adopts a query-adaptive indexing strategy.

To get a general idea about our approach consider a sce-
nario where N peers form a DHT-based P2P network. Each
peer shares some of its documents with other peers and is
able to search documents located at other peers by issuing
multi-term queries. A straightforward solution is to broad-
cast queries to all peers, so each peer can evaluate each query
locally.

Let us assume now, that every peer π can provide a limited
storage space sπ. The whole network then has S =

PN

i=1 sπi

storage capacity that peers utilize to store query caches.
A cache for the query q stores its result set RSq, which
contains documents digests for all documents satisfying q.
They are sufficient for query filtering, i.e., we can locally
answer q using RSq′ if RSq′ contains RSq. Now, to answer
a query q we first try to find (at least one) cache which can
answer q, and issue a broadcast only if no such cache was
found. To entirely benefit from caching, DCT exploits query
subsumption. Hence, we are interested in locating any cache
which contains the result set of q. Thus, the DCT network
evolves in time to a large-scale distributed cache driven by
the query load, avoiding maintenance of (almost) never used
data and employing broadcasts only for rare queries.

DCT employs a distributed ranking mechanism described
in [13]. When a stored result set (cache) is used to answer a
query, it processes the query locally and returns only k top
ranked documents. The next portion of documents can be
supplied on demand. This mechanism significantly reduces
the traffic consumption.

In summary, the main contributions presented in this pa-
per are the following:

• We introduce a novel query-driven indexing strategy
for multi-term queries in a P2P environment that is
based on the query subsumption property;

• We perform experiments with real query traces that
show a high number of subsumption dependencies in
realistic query loads that are beneficial for our ap-
proach;

• We achieve a significant overall traffic reduction com-
pared to the distributed single-term indexing approach.

The paper is organized as follows: We position our ap-
proach with respect to related work in Section 2. We de-
scribe the caching strategy in Section 3, in particular, a
distributed meta-index in Section 3.1, followed by the cache
management discussion in Section 3.2. We discuss load bal-
ancing issues in Section 4. Simulation results are presented
in Section 5, followed by the conclusion in Section 6.

2. RELATED WORK
Full-text P2P search has been investigated for both un-

structured and structured P2P networks. Search techniques
in unstructured networks are usually based on broadcasts,
thus suffering from high bandwidth consumption. Hence ap-
proaches based on random walks [23] and hierarchical net-
work solutions [11] have been proposed to reduce the gener-
ated traffic in a P2P network.

Structured networks are more difficult to maintain, but
offer considerably better search efficiency compared to un-
structured networks by utilizing a distributed index (typi-
cally a DHT). DHTs provide efficient single-term lookups
by hashing terms into keys. Assume the distributed in-
dex stores posting (inverted) lists for all terms found in a
document collection, then a multi-term query is usually re-
solved by intersecting these lists for all terms in the query.
However, this approach faces significant scalability problems
caused by high traffic costs required for intersecting large
posting lists. For example, [15] and [18] have proposed top-
k posting list joins, Bloom filters, and caching as promis-
ing techniques to reduce search costs for multi-term queries.
However, a recent study [24] shows that single-term index-
ing is practically unscalable for web sizes even when sophis-
ticated protocols using Bloom filters are combined to reduce
retrieval costs.

The costly intersection can be avoided if inverted lists
store so-called document digests, sufficient for local query
answering. In this case, a query can be resolved from a
posting list for any of its terms. We refer to this approach
as single attribute dominated, as defined in [3]. Although
it insures that the traffic caused by query processing is low,
the size of the index becomes extremely large, reaching stor-
age capacity limits. Moreover, populating the index causes
very high traffic consumption. Therefore, this approach is
typically used by smaller scale applications such as [3, 1, 20].
The paper [19] uses the single attribute dominated approach
in P2P information retrieval. The authors designed a hybrid
indexing scheme which sacrifices the search quality in order
to reduce the index size.

However, the techniques presented above assume that all
data available in the network has to be indexed. This as-
sumption results in generation and maintenance of a large
number of index entries which may (almost) never be uti-
lized. In contrast, our adaptive indexing solution generates
the index “on-the-fly”, driven by the query load. It adapts
to the global storage capacity provided by the peers4, there-
fore limiting the indexing traffic; at the same time it achieves
low traffic consumption during query processing.

Probably the closest approach to ours with respect to the
caching strategy is [2]. The authors employ a similar idea,
though the indexing part is done differently, no load bal-
ancing is considered and no explicit results showing query
processing costs were reported. The paper [10] suggests
to avoid maintaining large posting lists by complementing
index-based query processing with broadcasting. In contrast
to our approach, the authors suggest using flooding mecha-
nisms to answer popular queries, and leverage indexing only
for rare queries.

Caching of query result sets as the performance improve-
ment for an existing distributed index is used by many P2P
indexing approaches. For example, [17] and [7] utilize caching
for efficient processing of XPath queries. [9] and [16] em-
ploy caching to improve the search efficiency while process-
ing range queries.

DCT is in a way similar to the Freenet approach [4] since
it adopts document caching along the search path of a query,
however the latter pursues the different goal of network clus-
tering.

Finally, [12] suggests a similar idea to our query-driven

4In fact, selection of a storage capacity provided by a peer
regulates the bandwidth consumption required for indexing.



indexing, but applied to a local XML database for answering
XPath queries. Their results conform to our observations
about the high potential of cache-based query processing.

3. INDEXING AND CACHING STRATEGY
Let us assume a network of N peers, πi, i ∈ 1..N , where

each peer hosts a part of the document collection Dπi
and

issues queries from a local query load Lπi
. Therefore, D =

SN

i=1 Dπi
is the global document collection and L =

SN

i=1 Lπi

is the global query load.
Let us define a superset T = {t1, t2, .., tm} as the vocabu-

lary consisting of all single terms found in the global query
load L. Then, a query q ∈ L is defined as q = {t1, t2, .., tn}
and is a subset of T , q ∈ 2T . The number of terms in q is de-
noted as |q| = n. Similarly, we define a document d ∈ D as
d = {t1, t2, .., tr} which is also a subset of T : d ∈ 2T . Essen-
tially, we simplify the representation of an original document
d0 by intersecting the set of all terms contained in d0 with T ,
d0 = d ∩ T , and therefore ignore the terms contained in the
original document which do not appear in the query load.

A query q matches a document d iff q ⊆ d. The result set
RSq for the query q is the set of all documents matching q,
RSq = {∀di ∈ D | q ⊆ di}.

Now we define the query subsumption relation as follows:
A query q′ subsumes a query q when all terms in q′ are
also contained in q, i.e., q′ ⊆ q. Obviously, q′ ⊆ q implies
RSq′ ⊇ RSq. In other words a query q can be answered by
postprocessing of the result set associated with q′.

The set of all possible queries over T can be represented as
a lattice of the size 2|T |−1. Each lattice node corresponds to
a query, and the whole lattice models the set of all potential
queries over T that might appear in the query load L. For
example, a lattice generated for the vocabulary of four terms
Tabcd = {a, b, c, d} is shown in Figure 1.a. An arrow from
a query q1 to a query q2 reflects the subsumption relation
q1 ⊆ q2. Figure 1.b highlights all descendants of nodes a
and cd, referring to all the queries that are subsumed by the
queries a and cd. Indeed, all queries containing either the
term a or both terms c and d can be answered from the two
result sets RSa and RScd.

a b c d

ab bc adac bd cd

abc abdacd bcd
abcd

a b c d

ab bc adac bd cd

abc abdacd bcd
abcd

a)

b)

Figure 1: Query subsumption: a) a,b,c,d lattice; b)
lattice with the queries “a” and “cd” being cached.

Each peer has a certain storage capacity and uses it to
store carefully chosen result sets. In fact, a peer π caches
result sets for certain queries from its local query load Lπ

and advertises it to other peers using a distributed meta-
index. Therefore, to answer a new query, another peer may
lookup the location of existing caches that may resolve the
query as it is described in Section 3.1. Furthermore, as the
peer storage capacity is limited, each peer runs a greedy
cache-selection algorithm as described in Section 3.2.

3.1 Meta-index
The meta-index facilitates efficient lookup of the result

set (cache) locations for a given query. Formally, given q
we need to obtain a result set RSq by locating at least one
cache RSq′ such that RSq′ contains RSq (RSq′ ⊇ RSq).
In other words, we are interested in locating a cache for q′,
such that q′ ⊆ q. To locate relevant result sets, we introduce
a distributed meta-index which stores links to actual cache
locations. Given a query q, the meta-index returns a list of
tuples {qi, uri(RSqi

)} for the queries which are cached and
subsume q. A random tuple from the received list is selected
and the query q is forwarded to the peer storing the chosen
cache. This peer processes q locally and returns the list of
documents matching q. If no caches were located by using
the meta-index, i.e., the query can not be answered from
the cache, it is broadcasted to all the peers that evaluate
the query against their local document collections and send
the answers to the originating peer. Since peers participate
in a DHT, we can use the “shower broadcast” technique [6],
which insures that each peer is visited only once. To answer
a query q, O(N) messages have to be send to notify all peers
that generate |RSq| records of traffic while answering, where
|RSq| denotes the number of records in the result set of q.

The meta-index is implemented using the standard put/get
functionality offered by the DHT. Given a cache RSq′ physi-
cally stored at uri(RSq′) an advertise operation is performed
by inserting a tuple {q′, uri(RSq′)} at the peer responsible
for the key = h(tr), where h() denotes the DHT’s hash
function and tr ∈ q′ is a randomly chosen term from q′.
Therefore, the advertise operation requires one put message
to be send with O(log N) overlay hops.

Given a query q to be answered, the meta-index lookup
operation is performed in the following way: n = |q| mes-
sages containing the original query q are sent to the n peers
responsible for h(t1), h(t2), .., h(tn), where ti ∈ q,∀i ∈ 1..n.
Each peer responds with a list of cached result set locations
for queries that subsume q. Therefore, the cache lookup op-
eration requires n get messages to be send with O(n log N)
overlay hops.

Section 3.2 introduces the cache management and explains
how a peer can locally decide which caches have to be cre-
ated or dropped leading to the quasi-optimal utilization of
the overall network storage capacity S, thus reducing the
number of broadcasts for the current query load.

3.2 Cache management
Having defined the meta-index, we can formulate the prob-

lem of finding an optimal set of caches in the network that
maximize the number of cache-hits for a given query load
and a P2P network with a constrained global storage capac-
ity distributed among the participating peers.

Each query q in the global query load L is assigned a
probability pq of being queried. We assume that the result



set sizes of all queries from L are known: |RSq|, ∀q ∈ L
denotes the number of documents in RSq.

We denote the set of cached queries as Ω ⊆ L. To store
(cache) result sets for all the queries in Ω, the following
global storage capacity is needed (measured in the number
of documents): SΩ =

P

∀qi∈Ω |RSqi
|.

Our goal is to utilize the available storage as efficiently as
possible which means to minimize the number of broadcasts
or maximize the number of cache-hits. We denote a function
cachehit(q) as follows:

cachehit(q) =

˛

˛

˛

˛

1, ∃q′ ∈ Ω, s.t. q′ ⊆ q;
0, otherwise.

Therefore, the cache optimization problem is to find a
set Ω containing queries to be cached that maximizes the
number of cache-hits:

Ω = argmax
X

∀qi∈L

cachehit(qi) pqi
,

having a storage constraint:

SΩ =
X

∀qi∈Ω

|RSqi
| ≤ S0.

The stated optimization problem is similar to the well-
known 0/1 knapsack problem [8] (which is known to be
NP-complete), applied to all queries from L. The increased
complexity of the cache optimization problem compared to
the knapsack problem is caused by the fact that we can-
not assign constant profits to queries (items) due to the
subsumption-related inter-dependencies between the queries.
Furthermore, as the query load is dynamic, we are rather in-
terested in a decentralized algorithm which leads to a quasi-
optimal solution.

Indeed, each peer has to decide locally on a set of queries
it caches to fill in its available storage. A peer pursues a
greedy cache-selection strategy by deciding to cache queries
such that their estimated profits are high. We define a max
profit of the query q as: profitmax(q) =

gq

|RSq|
, where gq =

P

∀qi⊆q
pqi

refers to the probability of the query q being
utilized to answer any query from L if no other caches are
available. However, since there could be more then one cache
capable of answering a given query due to the subsumption,
the actual profit is lower and depends on the existing caches
in the network.

An estimate of the query profit can be obtained from the

statistics as profit(q) =
P

∀qi⊆q

bfreq(qi)
|RSq|

, where bfreq(qi)

is the number of broadcasts of qi (because no caches sub-
suming qi were found) observed recently. In this formula
we can distinguish an absolute frequency afq = bfreq(q)
of the query q being queried and a subsumption frequency
sfq =

P

∀qi⊆q
bfreq(qi). The latter one counts all queries

subsumed by q including q itself for the current state of the
network. Obviously, afq ≤ sfq. After we defined the sub-
sumption frequency, the query profit can be finally expressed
as:

profit(q) =
sfq

|RSq|
.

DCT peers perform local and isolated maintenance of the
global query statistics: each peer has a global view (by lis-
tening to broadcasts) on the locally selected subset of queries
it monitors. We restrict this monitored subset to the set of

popular queries this peer used to submit in the past. The
advantage of this mechanism is that approximate result set
sizes are already known from the history. The statistics
module counts recent absolute and subsumption frequencies
for each query. When a peer caches a new query, it adver-
tises the new cache in the meta-index as described above.

For every existing cache similar statistics are maintained
measuring its absolute and subsumption cache-hit values, in
order to drop it if more profitable caches were found.

Following a greedy strategy a peer can create a new cache
if there is enough space available or the required amount of
space can be released by dropping caches with lower prof-
its. Hence, each peer locally selects the most profitable
caches for the available local capacity. Therefore, if the
query load is static, the greedy strategy ensures that the
resulting cache-hit can only increase or remain the same.

Due to the multiple subsumption dependencies between
queries, caching or dropping a query might substantially in-
fluence statistics maintained for other related queries. We
argue, that the presented strategy, though simple, grace-
fully adapts to the P2P network instability and changes in
the query load. Indeed, the cost of adding a cache is only
O(log N) overlay hops (needed to modify the meta-index),
while dropping a cache causes only one extra message to
be sent. In case of a peer failure all caches it stored or
indexed become unavailable, causing broadcasting the asso-
ciated queries. Thus, other peers will probably cache them
if the profits are high enough.

However, a popular query q0 might not be cached if it is
associated with a large result set because its profit could
be relatively low. In this case, DCT will react by caching
popular derivatives of q0 (queries subsumed by q0) if needed.
However, the meta-index would report a cache-miss for q0

itself, and it would have to be broadcasted every time. To
solve this problem we suggest caching only top-k result of q0.
Obviously, this “top-k” cache can not be utilized to answer
any other query except for q0. Its profit can be estimated as

profittopK(q0) =
afq0

k
.

Recall, that afq0 denotes the absolute query frequency of q0

being queried. The constant k reflects the maximum number
of records the majority of the users would browse5.

A DCT’s top-k selection algorithm chooses the best type
of cache for each query, by comparing the estimations of
profits calculated for the top-k and full case. If adding a
new full cache fails, the second attempt is made as top-
k. A top-k cache can be switched back to a full cache by
issuing a broadcast if the profit of the full cache is higher.
Alternatively, when a full cache is about to be deleted it can
be switched to a top-k instead.

The presented strategy facilitates the distributed selec-
tion of caches being constrained with the available storage
capacity in the network and leads to a quasi-optimal solution
with respect to the minimization of the traffic consumption.
Furthermore, utilizing top-k caches significantly reduces the
number of cache-misses for the queries associated with large
result sets and further decreases the traffic consumption.

5Note, that our top-k caching strategy follows the original
idea of indexing discriminative term sets [13]



3.3 Example
Let us illustrate the approach by an example. Initially, all

queries are broadcasted and each peer has to evaluate each
query over its local document collection. A peer π joins
the network and starts processing broadcasts and issuing its
own queries. π maintains statistics about the queries from
its local query history, for example:

Query |RSq| afq sfq

cd 500 5 50
a 5000 98 100
ab 2000 21 23

The statistics table stores information about the most fre-
quent queries from π’s local query history. Recall that afq

and sfq denote the absolute and subsumption frequencies
respectively. |RSq| is estimated locally, since the result set
for q was obtained by π before.

Assume the query cd is issued at π. The peer computes the
full and top-k profit estimates as profit(“cd”) = sfcd

|RScd|
=

50/500 = 0.1 and profittopK(“cd”) = afcd

k
= 5/250 = 0.02,

if k = 250 is chosen. Then it checks if there is enough
storage space to cache cd as a full cache. If not, π com-
pares profit(“cd”) with profits of already existing caches
and drops some of them if needed to store the result set of
cd. Alternatively, it can consider caching the query as top-k,
which would be the case for query a for example.

Assume π is caching cd. It issues a broadcast and stores
the obtained result set. To make the cache available for
other peers in the network, π generates a key: key = h(“c”)
(or key = h(“d”)) and inserts a tuple {“cd”, addressπ} into
the meta-index using the key. The tuple is routed to the
peer πkey responsible for the key and πkey stores the tuple.
Assume also, that another peer caches a (top-k) result set
for the query “a”.

cd� �
a� �

� RS(“cd”)

q=”acd”?

(1)

(1)

(2)

(4)

(2)

(3)

metaindex

cache

Legend:

P2P

� � � � �
Figure 2: Query processing example

Figure 2 shows how the 2-step query processing is per-
formed. A peer πorig submits the query q = “acd”. First,
the meta-index is searched for available caches. To do so,
3 messages containing q are routed to the peers responsible
for h(“a”), h(“c”) and h(“d”) respectively (1). πa, πc and
πd browse their meta-index tables and send back the lists
of relevant caches (2). Please note that since the query a is
cached as top-k, it cannot be used to answer acd. Hence, the
information that the query cd is cached at addressπ received
from the peer πc will be used. The originating peer requests

π to answer the original query (3). π responds back with the
answer (4). In case no caches were found in the meta-index,
a broadcast would be used to answer the query.

4. LOAD BALANCING
Since our approach is based on caching popular queries,

peers can suffer from certain load imbalances due to both
non-uniform meta-index lookup requests and uneven cache
utilization. In this chapter we argue that load imbalance
caused by these factors can be efficiently tackled without
substantial performance degradation. In the following we
discuss load balancing issues for both cases in details.

4.1 Meta-index load balancing
We argue that due to the small size of the data stored

in the meta-index and a certain randomization in the ad-
vertise operation, almost no explicit load balancing of the
meta-index is necessary. However, peers that are responsi-
ble for the most popular terms can receive a large number of
incoming requests, which can be avoided by handling such
terms in a special way, as explained in [5]. First, these terms
are marked as popular and the index information involving
them is moved to alternative locations if possible, since a
query q = t1..tn can be indexed on any of the n peers. Then,
the terms are advertised to the forwarding peers6 as popu-
lar so these peers can take part of the load caused by the
popular term. Thus, subsequent requests will not reach the
original peer, but will be pruned on the way, leading to a
better load distribution.

Indeed, our evaluations show, that only several top pop-
ular terms cause very high meta-index lookup load. Hence,
the solution proposed above would split the load among
neighboring peers, avoiding meta-index lookup hot-spots.

4.2 Cache access load balancing
Balancing of load caused by resolving queries from caches

is more crucial due to the high traffic it creates to supply
query results compared to the meta-index lookup. However,
our evaluations show that only several top popular caches
are accessed very often and cause serious load imbalance.

Thus, standard DHT replication mechanisms can be suc-
cessfully utilized to relieve overloaded peers. Furthermore,
our preliminary investigation shows that more sophisticated
load balancing can be embedded into the DCT algorithms.
We leave the detailed analysis of the cache load balancing
mechanisms for future work.

5. EXPERIMENTAL RESULTS
In this section we report experimental results obtained

by using our DCT simulator implemented in Java. The
data collection used in the experiments is the Wikipedia [21]
document collection (6Gb XML dump of the core English
Wikipedia from May 2006 available at [22]) containing 3M
pages.

We used two real Wikipedia query load traces from Au-
gust and September 2004. Both of them have very similar
properties, hence we summarize only those of the August
trace. From the total of 4.6M queries, there are 1.3M unique
queries. There are 0.5M queries occurring at least twice and

6Forwarding peers are peers that have πp in their routing
tables, where πp is the peer responsible for a popular term



250K at least three times in the query load. The queries con-
tain 160K unique terms while the average number of terms
in a query is 2.6.

Both the Wikipedia document collection and the query
loads were preprocessed by applying the Porter stemmer [14].
Before performing the experiments we obtained query result
set sizes for all the queries: First we built an in-memory
single-term index for all terms appearing in the query loads
and then we computed cache sizes for each query by inter-
secting posting lists for its terms.

5.1 Simulation setup
The DCT simulator creates a number of peers with a pre-

defined available cache capacity. It iteratively chooses ran-
dom peers to generate queries and simulates the distributed
query processing using the algorithms defined in Section 3.
A query generator selects a real query from a query trace
following the trace distribution.

We decided to limit the available storage capacity per
peer to 200K records and fixed the top-k cache size to 250
records. As mentioned in Section 3.2, we monitor only re-
cent query statistics, hence we selected a reasonable size of
200K broadcasts for the history window. In other words, the
query statistics are maintained for the period which covers
the last 200K broadcasts. Finally, a query can be cached
only if it was already answered before, since its result set
size has to be known.

In our experiments we measure three values: CacheHit,
SubsumHit and TopKHit. CacheHit reflects the fraction of
queries that were answered from caches, therefore the re-
maining (100 − CacheHit)% queries were answered using a
broadcast. A query q can be answered from a top-k cache
producing a TopKHit. Alternatively, we have a SubsumHit
if q was answered using RSq′ cache and the issued query
q is different from the cached query q′ (formally, q′ ⊂ q).
Obviously, CacheHit ≥ TopKHit + SubsumHit.

5.2 Storage capacity
In this experiment we explore how much capacity is needed

to ensure a reasonable cache-hit ratio. We vary the number
of peers N , thus changing the overall network capacity as
N × 200K records. Figure 3 plots the maximum CacheHit,
SubsumHit and TopKHit achieved after the network con-
verges to a stable state by processing 4.6M queries.
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Figure 3: Max achieved CacheHit, SubsumHit and
TopKHit with different number of peers.

Figure 3 shows that a high cache-hit value can be achieved
with relatively low storage capacity, e.g., DCT with 100
peers storing 200K records each, converges to 85% cache-
hit. Another observation which we make from this plot is
that top-k caches are extensively used when available stor-
age space is limited (when the number of peers is below 20),
whereas more and more queries are answered via subsump-
tion as the capacity grows. Having high subsumption rate
leads to a more robust network as we will see in a stress test
experiment in Section 5.4.

When the DCT network contains 1000 peers (marked with
the asterisk) only 71% of the available capacity is utilized,
thus the achieved cache-hit of 98% is the maximum for our
experimental setting. The remaining 2% are those queries
that were not subsumed by any cached query and were asked
only once, so caching had no impact on them. We achieved
such low cache-miss ratio due to the high subsumption rate.
Indeed, our simulations show that if peers have infinite ca-
pacity, but store only top-k caches, the maximum cache-hit
that can be achieved is only 82%. This number can easily be
obtained from the query load statistics. Recall, that out of
1.3M unique queries only 500K were repeated at least twice.
Hence caching has no impact on 800K “single” queries. Hav-
ing 4.6M queries in total these 800K queries are exactly the
remaining 18%.

5.3 Traffic consumption
The main goal of our simulation is to show that the pro-

posed query-driven approach is a promising alternative to
standard single-term indexing techniques in a P2P-IR sce-
nario. In the following we will show that DCT reduces traffic
consumption by two orders of magnitude when compared to
the näıve approach, which indexes single terms in a struc-
tured P2P network.

We implemented the näıve approach based on a single-
term index. For each query we first eliminate stop words
(we used a list of 260 common English words). Then, we
locate peers responsible for remaining terms in the same
way it is done by DCT. The query is answered by conveying
a posting list between the peers responsible for the query
terms. Posting lists are practically intersected along the way
until reaching the final peer that produces the answer to the
query and sends only top-10 records to the query originator
(more records can be send on demand).

We implemented two variations of the näıve approach:
näıve-random and näıve-sort. The first one chooses terms
and responsible peers in a random order, whereas the second
one sorts the terms according to the sizes of their posting
lists and contacts the peers in that order. We measure the
traffic required to process a query as a number of records
which have to be transmitted in the network. Please note,
that assuming the term index is already available because
it was produced beforehand during the indexing phase, the
traffic required to process a query depends only on the post-
ing list sizes of its terms. We computed the average traffic
for the Wikipedia query loads and the data dump and ob-
tained the following values after processing 4.6M queries:

Approach August 2004 September 2004
näıve-random 37 370 rec./query 38 919 rec./query
näıve-sort 8 232 rec./query 8 903 rec./query
broadcast 7 920 rec./query 7 197 rec./query
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Figure 4: Network with 100 peers, 200K records per
peer. a) Cache-hit; b) Traffic consumption.

The size of the generated single-term index was 240M
records. However, the term index was build only for terms
from the query load, whereas in practice this information
is not available in advance. While standard IR approaches
try to extract all probable terms from the documents dur-
ing indexing, DCT relies on monitoring the query load for
“on-the-fly” index construction.

As we can see the näıve approach performs poorly in terms
of traffic consumption due to large posting list sizes which
have to be transmitted. Surprisingly, the traffic consump-
tion of the simple broadcast is even slightly better than the
näıve-sort, although it requires propagating each query to
all peers in the network (note, that our traffic computa-
tion ignores the control and routing messages sent between
peers).

Figure 4.a shows how the CacheHit, SubsumHit and Top-
KHit values increase with the number of processed queries.
The figure also plots the cache utilization curve, which shows
that all available space is almost fully utilized after process-
ing 30K queries. Hence, the following cache-hit increase is
achieved by proper selection of caches. Finally, it can be ob-
served that after enough statistics are gathered (after 200K
broadcasts) the TopKHit starts decreasing while SubsumHit
increases. It happens because some caches switch from top-k
to full cache, based on the profit comparison.

Figure 4.b plots the average traffic per query generated by
our approach (DCT-All curve). The DCT-Indexing curve
shows the fraction of the traffic which was used to cre-
ate new caches. Traffic consumption is reducing rapidly
as DCT converges. We also output the näıve and broad-
cast traffic consumption for comparison. DCT-All curve is
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Figure 5: Stress test with 500 peers, 200K records
per peer. a) Cache-hit; b) Traffic consumption.

always below näıve and broadcast, moreover, the traffic con-
sumed by our approach after DCT converged (approx. 140
records/query) is two orders of magnitude lower than näıve-
sort or broadcast. As we will see in Section 5.4 the DCT
traffic consumption decreases even further when the cache-
hit increases. The ideal value of 10 records/query would be
achieved if all queries are answered from the cache.

Despite of low traffic requirements, DCT causes more
overlay messages to be sent. The difference comes from
broadcasting the remaining (100−CacheHit)% queries that
cannot be answered from the cache. This price is paid how-
ever, for the much smaller index size due to its adaptivity to
the query load. In terms of latency DCT requires O(log N)
time to answer a query from cache plus additional O(log N)
in case a broadcast is required. The näıve approach re-
quires additional time to transmit (possibly) large posting
lists which substantially increases the latency.

5.4 Stress test
We performed a stress-test: In the first part of the test we

were generating queries from the August query trace and af-
ter 4.5M queries we switched to the September trace. Figure
5.a shows that DCT converges to the high cache hit ratio
of approx. 98%, slightly drops when the query load changes
and converges again. The change of the query load is quite
smooth because of the high subsumption utilization. Fig-
ure 5.b shows the traffic consumption during the stress test.
It can be observed that the traffic consumption drops to
relatively low values and slightly increases when the query
load changes. Finally, with 98% cache-hit ratio the traffic
consumption reduces to approx. 75 records/query.



5.5 Load balancing
Figure 6 shows the peers’ load obtained for a network

consisting of 100 nodes and caused by answering queries
from caches (Figure 6.a) and meta-index lookups Figure 6.b.
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Figure 6: Load caused by a) cache access and b)
meta-index lookups in the network of 100 peers.

It might seem that popular caches cause huge load im-
balance. However, if a user requests only top-10 items and
taking into account unrestricted cache placement, which de-
pends only on the peers’ querying activities, the load is dis-
tributed almost evenly as it can be observed in Figure 6.a.
The only problem is caused by several top-popular queries
that create very heavy load. A native DHT replication
mechanism can be used to solve this imbalance.

The meta-index service exhibits a certain load imbalance
as shown in Figure 6.b, however it serves only index lookups
that do not require large traffic transfers. Moreover, TCP/IP
connections to the neighbors are maintained alive by the
DHT, hence, the imbalance caused by the meta-index has
low impact compared to the cache imbalance. Addition-
ally, the mechanisms we proposed in Section 4.1 would help
avoiding hot spots with low overhead.

6. CONCLUSIONS
In this paper we presented a novel query-driven index-

ing strategy for multi-term query processing with structured
P2P networks. Our approach, called Distributed Cache Ta-
ble (DCT), avoids maintaining rarely used index entries by
adapting to the query load. DCT peers run the greedy algo-
rithm leading to a quasi-optimal cache selection that maxi-
mizes the the global cache-hit ratio. DCT relies on the sub-
sumption relation between queries while selecting a cached
result set to resolve a query.

We performed an extensive experimental evaluation on
real data and query traces that confirms the feasibility of
our approach. The results have shown two orders of magni-
tude reduction in traffic consumption compared to the näıve
single-term indexing approach.

We claim that DCT can be applied to the broader class
of conjunctive queries. Such a query is expressed by a con-
junction of atomic predicates: q = a1&a2&..&an, where the
atomic predicate structure is application-specific, e.g., for
the studied class of multi-term queries each atomic predicate
is a natural language term. We leave exploration of addi-
tional benefits that come from the knowledge of the atomic
predicate structure for future work.
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